<

05-Dec-2014

New mechanism to convert light into electricity

New mechanism to convert light into electricity

Researchers of the FOM Institute AMOLF and the California Institute of Technology have discovered a new method to generate electrical potentials using light. Using precisely sculpted metal nanocircuits they found that light can be effectively captured and converted to an electrical potential as high as 100 millivolt.

The Team give the newly discovered effect the name “plasmo-electric effect”. The next step is to collect current and generate electrical power.

Nobel metal particles made of copper, silver, and gold, are well known for their colorful spectra when illuminated with light. A well-known example are the stained glass windows in ancient churches in which the colors originate from small metal nanoparticles that are embedded in the glass. Light that is incident on these particles is converted into plasmons, oscillations of free electrons in the metal, which leads to strong absorption and scattering of particular colors of light.

The AMOLF-Caltech team investigated this light absorption process in artificially created metal nanostructures that they made using modern cleanroom techniques. They discovered that a negative electrical potential was formed on gold nanospheres, if they are illuminated with blue light. In contrast, a positive potential was found for illumination with red light. The voltage was measured using an ultra-sensitive needle that was placed above the nanospheres while they were being illuminated with laser light.

Inspired by this initial result, the team fabricated metal nanocircuits composed of a square array of minute 100-nanometer-diameter holes in a 20-nm-thin gold film. Like the nanoparticles, these metal hole arrays possess bright plasmon resonances, of which the wavelength can be controlled by the spacing between the holes. When irradiating these circuits with a laser, and gradually tuning the color of the light from blue to red, a negative potential (-100 mV) was found for blue light and a positive potential (+100 mV) for red light.

The researchers developed a thermodynamic model that describes the measured data well. The model shows that the incident light generates minute temperature variations that thermodynamically drive the exchange of electrical charges on the circuits, leading to the measured potentials.

More information:
www.amolf.nl

 
 
 
 
  • LASER World of PHOTONICS
 
Highlights
active active active
for exhibitors
for visitors
for the press
That was LASER World of PHOTONICS

That was LASER World of PHOTONICS 2017

Full halls, constructive discussions and positive feedback. Experience the highlights of the 2017 exhibition all over again.

That was LASER World of PHOTONICS

That was LASER World of PHOTONICS 2017

Full halls, constructive discussions and positive feedback. Experience the highlights of the 2017 exhibition all over again.

That was LASER World of PHOTONICS 2017

Full halls, constructive discussions and positive feedback. Experience the highlights of the 2017 exhibition all over again.

Well informed—365 days a year

Well informed—365 days a year

Whether it comes to fair-related news, industry knowledge or background information: We always keep you up to date—all year long and on all channels.

Well informed—365 days a year

Well informed—365 days a year

Whether it comes to fair-related news, industry knowledge or background information: We always keep you up to date—all year long and on all channels.

Well informed—365 days a year

Whether it comes to fair-related news, industry knowledge or background information: We always keep you up to date—all year long and on all channels.

What the world’s leading trade fair has to offer

What the world’s leading trade fair has to offer

What is the focus? Who participates? How do you profit? Here you find the most important information about the world’s leading trade fair for photonics.

What the world’s leading trade fair has to offer

What the world’s leading trade fair has to offer

What is the focus? Who participates? How do you profit? Here you find the most important information about the world’s leading trade fair for photonics.

What the world’s leading trade fair has to offer

What is the focus? Who participates? How do you profit? Here you find the most important information about the world’s leading trade fair for photonics.