< stage detail

10-Jun-2015

New microscopy makes individual cells visible

New microscopy makes individual cells visible

A new microscopy technique enables for the first time to selectively visualize individual cells within the complex, three-dimensional tissue of a living organism. An observation led to the new application. The researchers worked with a special class of fluorescent proteins (see box) that change colour when irradiated with laser light of a specific wavelength. One such ‘chameleon protein’ is called Dendra 2, which normally emits green light when illuminated with blue light. The emission of Dendra 2 is however shifted into the red when it is irradiated by intensive violet or ultraviolet (UV) laser light.

Two-laser combination
The researchers specifically discovered that when Dendra 2 is irradiated by both a blue and a red laser at the same time, the protein’s colour can also change to red. For this dual-colour illumination low intensity laser light is sufficient. In contrast to high intensity violet or UV irradiation it does not damage living cells.

Fluorescent proteins can be used to make whole cells, precise cell structures or single molecules visible. For the first time, the discovery permits a single cell or group of molecules located within a desirable part of a living organism to be highlighted with one colour, while all the other cells or molecules remain visible with another colour.

The researchers have developed a simple and inexpensive colour filter, which can be used with the conventional confocal laser microscopes that are found in many biomedical research institutes. When mounted between the laser source and object, the filter divides the laser light into separate blue and red beams that are directed on to a small focal point on the object.

Examination of dynamic processes
The ability to make individual neurons visible could be of great importance, for example, in the precise mapping of the brain, according to Pantazis. Since the method is suitable for individual cell targeting in living organisms, it could also be used to examine dynamic processes; for example, what happens to individual cells or a group of molecules when researchers treat an organism with active pharmaceutical ingredients. Embryo development could also be examined in more detail.


More information:
www.ethz.ch

 
 
 
 
  • LASER World of PHOTONICS
 
Highlights
active active active
for exhibitors
for visitors
for the press
That was LASER World of PHOTONICS 2017

That was LASER World of PHOTONICS 2017

Full halls, constructive discussions and positive feedback. Experience the highlights of the 2017 exhibition all over again.

That was LASER World of PHOTONICS 2017

That was LASER World of PHOTONICS 2017

Full halls, constructive discussions and positive feedback. Experience the highlights of the 2017 exhibition all over again.

That was LASER World of PHOTONICS 2017

Full halls, constructive discussions and positive feedback. Experience the highlights of the 2017 exhibition all over again.

Well informed—365 days a year

Well informed—365 days a year

Whether it comes to fair-related news, industry knowledge or background information: We always keep you up to date—all year long and on all channels.

Well informed—365 days a year

Well informed—365 days a year

Whether it comes to fair-related news, industry knowledge or background information: We always keep you up to date—all year long and on all channels.

Well informed—365 days a year

Whether it comes to fair-related news, industry knowledge or background information: We always keep you up to date—all year long and on all channels.

What the world’s leading trade fair has to offer

What the world’s leading trade fair has to offer

What is the focus? Who participates? How do you profit? Here you find the most important information about the world’s leading trade fair for photonics.

What the world’s leading trade fair has to offer

What the world’s leading trade fair has to offer

What is the focus? Who participates? How do you profit? Here you find the most important information about the world’s leading trade fair for photonics.

What the world’s leading trade fair has to offer

What is the focus? Who participates? How do you profit? Here you find the most important information about the world’s leading trade fair for photonics.