<

24.07.2014

Neues Wundermaterial für Laser

Frequenzverdoppler für Lasersysteme

Laser haben sich für viele Anwendungen fest etabliert. Doch noch immer gibt es Wellenlängen, für die es keine oder nur sehr große und teure Systeme gibt. Andererseits werden für die Sensorik und für medizinische Anwendungen kompakte Lasersysteme gesucht, beispielsweise für Wellenlängen vom nahen Infrarot bis in die Terahertz-Region.

Wissenschaftler der Technischen Universität München (TUM) und der University of Texas (Austin, USA) haben nun einen optischen Baustein entwickelt, dessen nur 400 Nanometer dicke Schicht, 100-mal dünner als ein menschliches Haar, verschiedenste Frequenzen verdoppeln kann und -gemessen an der Eingangsintensität und der Strukturdicke - eine Million mal effizienter ist als traditionelle Materialien mit nichtlinearen optischen Eigenschaften. Dafür reicht eine Eingangslichtintensität wie die eines Laserpointers.

Während beim Einsatz konventioneller Materialien mit nichtlinearen optischen Eigenschaften die Phasengeschwindigkeiten der Eingangs- und Ausgangswellen genau abgestimmt werden müssen, entfällt diese Einschränkung bei dem neuen Material. Seine Gesamtdicke ist deutlich kürzer ist als die Wellenlänge.

Das Supersandwich
Das Wundermaterial der Physiker besteht aus einer Abfolge dünner Schichten aus Indium, Gallium und Arsen einerseits und Aluminium, Indium und Arsen andererseits. Knapp 100 dieser Schichten, jede zwischen einem und zwölf Nanometer dick, stapeln sie übereinander.

Auf der Oberfläche befindet sich ein Muster aus asymmetrischen, kreuzartigen Strukturen aus Gold, auf der Unterseite eine durchgängige Goldschicht. Mit der Schichtdicke und der Oberflächenstruktur besitzen die Forscher zwei Stellschrauben, mit denen sie die Struktur auf die jeweilige Wellenlänge präzise maßschneidern können.

Licht mit 8000 Nanometern Wellenlänge verwandelt das Material in Licht mit 4000 Nanometern Wellenlänge. Mit Laserlicht in diesem Frequenzbereich lassen sich beispielsweise Gassensoren für die Umwelttechnik bauen.

Kleiner als die Wellenlänge
Die Fähigkeit, die Frequenz eines Lichtstrahls zu verdoppeln, beruht auf den speziellen elektronischen Eigenschaften des Materials. Weil die Halbleiterschichten nur wenige Nanometer dick sind, können die von den elektromagnetischen Schwingungen des Lichts angeregten Elektronen nur noch ganz bestimmte Zustände einnehmen.

Eine solche Struktur nennen wir gekoppelte Quantentöpfe. Indem man nun in einem exakt definierten Abstand eine weitere dünne Schicht folgen lässt, kann man diese Zustände zusammenschieben oder auseinander ziehen und damit genau auf die gewünschte Wellenlänge einstellen.

Einen wichtigen Anteil an der hohen Effizienz des Bausteins hat das von den Forschern an der University of Texas unter der Leitung der Professoren Michail Belkin und Andrea Alu entwickelte Muster aus asymmetrischen, kreuzförmigen Goldstrukturen. Das Design dieser Strukturen können die Forscher optimal auf maximale Resonanz mit den Ein- und Ausgangsfrequenzen abstimmen.

Die Muster sind zwar wesentlich kleiner als die Wellenlänge des Lichtes, doch die regelmäßige metallische Struktur sorgt dafür, dass das Licht in das Material einkoppelt. Ihre besondere Form führt dazu, dass es an bestimmten Stellen starke Feldüberhöhungen gibt, die die Einkopplung noch verstärken. Es ist diese spezifische Kombination von Halbleitermaterial und Gold-Nanostrukturen, die die extrem große nichtlineare Reaktion produziert.

Terahertz-Strahlung
In Zukunft wollen die Physiker nach diesem Muster weitere Materialien für andere nicht-lineare Effekte entwickeln. Denkbar ist neben der Frequenzverdopplung auch die Frequenzhalbierung sowie die Erzeugung von Summen- oder Differenzfrequenzen. Mit solchen Bausteinen ließe sich dann beispielsweise Terahertz-Strahlung erzeugen und detektieren. Auf diese Strahlung setzt die Medizin, weil sie biologisches Gewebe nicht schädigt.

Indem sie außergewöhnliche elektromagnetische Wechselwirkungen und die Quantenphysik von Metamaterialien miteinander verknüpft, eröffnet diese Arbeit ein völlig neues Forschungsfeld im Bereich der nichtlinearen Optik. Weil sie nicht mehr dem Zwang zur Anpassung der Phasengeschwindigkeit unterliegen, eröffnen die in dieser Arbeit entwickelten ultradünnen nichtlinearen optischen Elementen neue Wege zu effizienten Bausteinen für die Frequenzkonversion.

Mehr Informationen:
www.tum.de
www.utexas.edu

 
 
 
 
  • LASER World of PHOTONICS
 
Highlights
active active active
für Aussteller
für Besucher
für die Presse
Das war die LASER World of PHOTONICS

Das war die LASER World of PHOTONICS 2017

Volle Hallen, konstruktive Gespräche und positives Feedback. Erleben Sie die Highlights der Veranstaltung 2017 noch einmal nach.

Das war die LASER World of PHOTONICS

Das war die LASER World of PHOTONICS 2017

Volle Hallen, konstruktive Gespräche und positives Feedback. Erleben Sie die Highlights der Veranstaltung 2017 noch einmal nach.

Das war die LASER World of PHOTONICS 2017

Volle Hallen, konstruktive Gespräche und positives Feedback. Erleben Sie die Highlights der Veranstaltung 2017 noch einmal nach.

365 Tage bestens informiert

365 Tage bestens informiert

Ob Messe-News, Branchenwissen oder Hintergrundinfos: Wir halten Sie immer auf dem Laufenden. Rund ums Jahr und auf allen Kanälen.

365 Tage bestens informiert

365 Tage bestens informiert

Ob Messe-News, Branchenwissen oder Hintergrundinfos: Wir halten Sie immer auf dem Laufenden. Rund ums Jahr und auf allen Kanälen.

365 Tage bestens informiert

Ob Messe-News, Branchenwissen oder Hintergrundinfos: Wir halten Sie immer auf dem Laufenden. Rund ums Jahr und auf allen Kanälen.

Was die Weltleitmesse bietet

Was die Weltleitmesse bietet

Was steht im Fokus? Wer nimmt teil? Wovon profitieren Sie? Hier erfahren Sie das Wichtigste über die Weltleitmesse der Photonik.

Was die Weltleitmesse bietet

Was die Weltleitmesse bietet

Was steht im Fokus? Wer nimmt teil? Wovon profitieren Sie? Hier erfahren Sie das Wichtigste über die Weltleitmesse der Photonik.

Was die Weltleitmesse bietet

Was steht im Fokus? Wer nimmt teil? Wovon profitieren Sie? Hier erfahren Sie das Wichtigste über die Weltleitmesse der Photonik.